Neurobiology of Disease Rheb Activation in Subventricular Zone Progenitors Leads to Heterotopia, Ectopic Neuronal Differentiation, and Rapamycin-Sensitive Olfactory Micronodules and Dendrite Hypertrophy of Newborn Neurons

نویسندگان

  • Carlos A. Lafourcade
  • Tiffany V. Lin
  • David M. Feliciano
  • Longbo Zhang
  • Lawrence S. Hsieh
  • Angélique Bordey
چکیده

Mammalian target of rapamycin (mTOR) hyperactivity in perinatal neural progenitor cells (NPCs) of tuberous sclerosis complex 1 (Tsc1) heterozygote mice leads to heterotopia and abnormal neuronal morphogenesis as seen in patients with tuberous sclerosis. Considering that pathological hyperactive mTOR also occurs in individuals carrying no genetic mutations, we examined whether increasing mTOR activity in neonatal NPCs of wild-type mice would recapitulate the above phenotypes. Electroporation of a plasmid encoding constitutively active Ras-homolog enriched in brain (Rheb ) into subventricular zone NPCs increased mTOR activity in newborn cells. At 19 d post-electroporation (dpe), heterotopia and ectopic cells with a neuronal morphology were observed along the migratory path [rostral migratory stream (RMS)] and in the olfactory bulb (OB). These ectopic cells displayed action potentials and received synaptic inputs identifying them as synaptically integrated neurons. RMS heterotopias contained astrocytes, neurons, and entrapped neuroblasts. Immunostaining at 3 dpe revealed the presence of Mash1 Olig2 cells in the migratory route accompanied by ectopic neuronal differentiation and altered direction and speed of neuroblast migration at 7 dpe, suggesting a non-cell-autonomous disruption of migration. At 19 dpe, newborn Rheb -expressing neurons displayed altered distribution and formed micronodules in the OB. In addition, they displayed increased dendritic complexity along with altered membrane biophysics and increased frequency of GABAergic synaptic inputs. OB heterotopia, micronodules, and dendrite hypertrophy were notably prevented by rapamycin treatment, suggesting their mTOR dependence. Collectively, these data show that increasing mTOR activity in neonatal NPCs of wild-type mice recapitulate the pathologies observed in Tsc1 mutant mice. In addition, increased mTOR activity in individuals without known mutations could significantly impact neurogenesis and circuit formation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

cAMP response element-binding protein regulates differentiation and survival of newborn neurons in the olfactory bulb.

The transcription factor cAMP response element-binding protein (CREB) is involved in multiple aspects of neuronal development and plasticity. Here, we demonstrate that CREB regulates specific phases of adult neurogenesis in the subventricular zone/olfactory bulb (SVZ/OB) system. Combining immunohistochemistry with bromodeoxyuridine treatments, cell tracer injections, cell transplants, and quant...

متن کامل

Epidermal growth factor and fibroblast growth factor-2 have different effects on neural progenitors in the adult rat brain.

Neurons and glia are generated throughout adulthood from proliferating cells in two regions of the rat brain, the subventricular zone (SVZ) and the hippocampus. This study shows that exogenous basic fibroblast growth factor (FGF-2) and epidermal growth factor (EGF) have differential and site-specific effects on progenitor cells in vivo. Both growth factors expanded the SVZ progenitor population...

متن کامل

mTOR kinase is needed for the development and stabilization of dendritic arbors in newly born olfactory bulb neurons

Neurogenesis is the process of neuron generation, which occurs not only during embryonic development but also in restricted niches postnatally. One such region is called the subventricular zone (SVZ), which gives rise to new neurons in the olfactory bulb (OB). Neurons that are born postnatally migrate through more complex territories and integrate into fully functional circuits. Therefore, diff...

متن کامل

IFN gamma regulates proliferation and neuronal differentiation by STAT1 in adult SVZ niche

The adult subventricular zone (SVZ) is the main neurogenic niche in normal adult brains of mice and rats. Interferon gamma (IFNγ) has somewhat controversially been associated with SVZ progenitor proliferation and neurogenesis. The in vivo involvement of IFNγ in the physiology of the adult SVZ niche is not fully understood and its intracellular mediators are unknown. Here we show that IFNγ, thro...

متن کامل

MicroRNA-124 is a subventricular zone neuronal fate determinant.

New neurons are continuously generated from neural stem cells with astrocyte properties, which reside in close proximity to the ventricle in the postnatal and adult brain. In this study we found that microRNA-124 (miR-124) dictates postnatal neurogenesis in the mouse subventricular zone. Using a transgenic reporter mouse we show that miR-124 expression is initiated in the rapid amplifying proge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013